Электромагнитные реле

Конечно, выдающийся американский физик Джозеф Генри, помогая художнику Самюэлю Морзе в постройке телеграфа, и не думал ни о какой электронике, которая потом завоюет мир. Электромагнитное реле он изобрел даже не в рамках фундаментальной науки, которая, как известно, есть способ познания мира и чурается практики, а просто, чтобы «помочь товарищу», который, впрочем, наверняка платил неплохие деньги.

Так это было или иначе – важно, что электромагнитное реле стало одним из самых главных технологических изобретений XIX века. По популярности ему не затмить, конечно, электрического освещения, электрогенератора и электродвигателя, телеграфа, телефона и прочих достижений «века электричества», но факт, что именно этот не очень известный широкой публике приборчик еще недавно был одним из важнейших компонентов любой электрической системы и широко используется до сих пор.

 

 

 

Рис. 7.1 . Схематическое устройство (а ) и рекомендуемая схема включения (б ) электромагнитного реле

 

Реле стало первым в истории – задолго до ламп и транзисторов – усилителем электрических сигналов. С помощью реле напрямую не усилить предвыборную речь кандидата в президенты, но если ее, по современной моде, закодировать нулями‑единицами, то реле справится с такой задачей в принципе ничуть не хуже любого другого устройства, – именно на этом свойстве было основано его применение в телеграфе Морзе.

Конечно, быстродействие реле, как ключевого элемента, оставляет желать лучшего – даже о килогерцах здесь речь не идет, обычная скорость срабатывания для самых малогабаритных и быстродействующих реле составляет десятки миллисекунд, что соответствует частотам в десятки герц. Но в режиме быстрого переключения реле использовать и не надо, для этого существуют другие электронные компоненты. Реле применяют там, где нужно надежно коммутировать нагрузку с минимальными потерями в контакте. Огромным преимуществом реле является не только полная изоляция между входом и выходом (как говорят, гальваническая развязка ), но и низкое сопротивление контактов. По этой причине их в наше время используют, например, для коммутации в измерительных схемах, где очень важно, чтобы сопротивление измерительных цепей было минимальным и стабильным.

Учтите, что указываемые в справочниках параметры контактов (типа «переходное сопротивление не более 1 Ом») обычно сильно завышены, они рассчитаны на наихудший случай.

На рис. 7.1, а схематически изображено устройство простейшего электромагнитного реле. Любое реле – независимо от конструкции – обязательно содержит три главных компонента: обмотку, якорь и контакты. Исключение составляют так называемые герконовые [11]реле, у которых якорем служат сами контакты. Обмотка представляет собой катушку индуктивности (соленоид), около которой (или в которой) при подаче тока перемещается якорь, выполненный из ферромагнитного материала. Теорию этого процесса излагать слишком долго, да к тому же она не нужна для практических целей. Важно понимать, что при подаче переменного или постоянного тока якорь перемещается и через тягу из изолирующего материала (на рис. 7.1, а она показана пунктиром) приводит к перемещению подпружиненных контактов, которые замыкаются (если были «нормально разомкнутыми») или размыкаются (если были «нормально замкнутыми»).

Также используется и вариант «перекидных» контактов, в которых присутствует центральный общий подпружиненный контакт, в нормальном положении замкнутый с одним из соседних, а при подаче тока перекидывающийся к другому. Если ток через обмотку снимается, то все возвращается в исходное состояние. Большинство типов реле содержит не одну, а несколько групп таких контактов, управляемых одним якорем. Это можно увидеть на рис. 7.2, где представлены некоторые типы реле.

 

 

Рис. 7.2 . Некоторые разновидности электромагнитных реле

 

Разумеется, вокруг этого базового принципа работы за много лет были накручены различные «прибамбасы»: так, существуют реле, которые при каждой подаче импульса тока перебрасываются в противоположное положение (пускатели), реле, контакт в которых может иметь три положения (трехпозиционные: замкнутонейтраль‑замкнуто) и т. п., но мы не будем их рассматривать, потому что большинство функций таких специализированных реле давно выполняют логические микросхемы. Мало того, вместо электромагнитных реле во многих случаях (но не во всех!) лучше использовать оптоэлектронные (твердотельные) реле – принцип тот же, но нет никаких соленоидов и движущихся частей. Их мы кратко рассмотрим далее, а пока изучим важнейшие характеристики обычных реле – они мало меняются даже с переходом к твердотельной электронике.

В обычных реле (кроме так называемых поляризованных ) эффект не зависит от направления тока в обмотках, но все‑таки некоторая разница в конструкции у реле, специально предназначенных для работы на переменном токе, имеется. Мы будем заниматься только реле постоянного тока (т. е. такими, обмотки которых работают от постоянного тока, хотя коммутировать они могут любой сигнал), потому углубляться в этот вопрос не станем.

В справочниках приводится либо величина тока через обмотку, либо величина рабочего напряжения, что равнозначно, потому что величина сопротивления обмотки тоже всегда приводится. Обычно конкретные типы реле имеют разновидности с разными сопротивлениями обмоток (это определяется так называемым паспортом реле).

Главный недостаток электромагнитных реле в сравнении с полупроводниковыми устройствами – то, что энергетический порог, с которого начинается управление обмотками, весьма велик. Все же токи в 30–50 мА при напряжениях 5‑30 В, т. е. мощности порядка ватта (и это для малогабаритных реле, для реле покрупнее нужна еще большая мощность), – запредельны для современной электроники и являются слишком большой роскошью, если требуется всего только включить нагрузку в виде лампочки. А вот когда необходимо от маломощного сигнала включить, например, мощный нагреватель – тут реле оказываются вне конкуренции. В большинстве современных бытовых нагревательных приборов (в калориферах, электродуховках, хлебопечках и пр.), по моим наблюдениям, для включения‑отключения мощного нагревателя применяют именно электромагнитные реле, а не бесконтактные выключатели – так надежнее, дешевле и, к тому же, уровень электромагнитных помех оказывается гораздо ниже.

* * *

 

Заметки на полях

Кстати, а как определить напряжение срабатывания незнакомого реле, если справочника нет под рукой? Это несложно, только надо иметь регулируемый источник питания. Найдите с помощью тестера выводы обмотки (она имеет обычно сопротивление от десятков ом до нескольких килоом, а если реле в прозрачном корпусе, то найти ее можно просто визуально) и подключите обмотку к источнику. Найдите нормально замкнутые контакты (прозвонкой) и подключите к ним тестер. Выведите источник на минимальное напряжение, включите его, а затем постепенно добавляйте напряжение.

Вместо подключения тестера можно просто поднести реле к уху, но если оно малогабаритное и, тем более, герконовое, то щелчок при срабатывании можно и не услышать. Отметьте значение напряжения, когда реле сработает, а затем умножьте его на полтора – это и будет приблизительное значение номинального напряжения срабатывания.

 

* * *

Другим недостатком реле, как нагрузки для полупроводниковых приборов, является то, что его обмотка представляет собой индуктивность. Для постоянного тока это просто сопротивление, но в момент переключения, как описано в главе 5 , на обмотке реле возникает импульс напряжения (по полярности он противоположен направлению изменения тока в обмотке). Если индуктивность обмотки велика, а ее собственное (активное) сопротивление мало, то импульс этот может вывести из строя коммутирующий прибор (например, транзистор) и в любом случае создает сильные помехи остальным элементам схемы по шине питания. Поэтому при стандартном включении реле всегда рекомендуется включать параллельно его обмотке диод (даже если коммутация происходит не от полупроводниковых источников, а от таких же реле) – в таком направлении, чтобы в статическом режиме, когда все успокоилось, диод этот тока не пропускал (см. рис. 7.1, б ). Тогда выброс напряжения ограничивается уровнем напряжения на открытом диоде, т. е. 0,6 В.

Следует учитывать еще одну особенность электромагнитных реле. Ток (напряжение) срабатывания у них намного превышает ток (напряжение) отпускания – так, если в характеристиках указано, что номинальное напряжение реле составляет 27 В, то при этом напряжении гарантируется замыкание нормально разомкнутых до этого контактов. Но совершенно необязательно выдерживать это напряжение длительное время – так, 27‑вольтовые реле спокойно могут удерживать контакты в замкнутом состоянии вплоть до того момента, пока напряжение на их обмотке не снизится до 8‑10 вольт. Подобный гистерезис – очень удобное свойство электромагнитных реле, которое позволяет избежать дребезга при срабатывании‑отключении и даже сэкономить энергию при работе с ними. Например, на рис. 7.3, а приведена схема управления реле, которое в начальный момент времени подает на него нужное номинальное напряжение для срабатывания, а затем неограниченное время удерживает реле в сработавшем состоянии при пониженной величине тока через обмотку.

На рис. 7.3 также приведены еще две классические схемы. Схема на рис. 7.3, б называется схемой самоблокировки (после нажатия кнопки «Пуск» ее можно отпустить, и реле останется замкнутым – блокируется) и очень часто применяется в управлении различными мощными устройствами – например, электродвигателями станков или насосов. Мощные реле‑пускатели для таких двигателей имеют даже специальную отдельную пару маломощных контактов, предназначенную для осуществления самоблокировки. В этих случаях ток через стандартные кнопки «Пуск» и «Стоп» не превышает тока через обмотку пускателя (который составляет несколько десятков или сотен миллиампер), в то время, как мощность разрываемой цепи может составлять многие киловатты, притом это может быть трехфазная цепь со всякими дополнительными неприятностями вроде огромных индуктивностей обмоток мощных двигателей.

 

 

Рис. 7.3. Некоторые схемы включения реле:

а – со снижением напряжения удержания; б – схема самоблокировки с кнопками «Пуск» и «Стоп», в – схема классического электромеханического звонка

 

Другая схема (рис. 7.3, в ) скорее забавна и представляет собой дань прошлому, когда никакой электроники не существовало. Это схема простейшего электрического звонка, который может быть реализован на любом реле. Оно и само по себе при подключении по этой схеме задребезжит (правда, звук может быть самым разным, в зависимости от быстродействия и размеров реле, потому лучше употребить слово «зазуммерит»), но в обычном звонке якорь еще связывают со специальной тягой, которая в процессе работы стучит по металлической чашке, формируя звуковой сигнал. Есть и более простая конструкция электромеханического звонка, когда на обмотку реле просто подают переменное напряжение, от чего якорь вибрирует с его частотой (так устроены, например, звонки старинных телефонов с крутящимся диском), но нас тут интересует именно классическая схема, потому что в ней в чистом виде реализован другой основополагающий принцип электроники, так или иначе присутствующий в любых генераторах колебаний, – принцип положительной обратной связи . Якорь в первый момент притягивается – питание размыкается – якорь отпускает – питание замыкается – якорь притягивается и т. д. Частота генерируемых колебаний зависит исключительно от механической инерции деталей реле.

 

 

Стабилитроны

Стабилитрон представляет собой обычный диод с вольт‑амперной характеристикой, подобной показанной на рис. 6.1, за одним исключением – при превышении некоторого обратного напряжения (индивидуального для каждого типа стабилитрона) он обратимо пробивается и начинает работать как очень малое сопротивление, при этом уровень напряжения сохраняется. Это можно представить себе, как если бы обычное прямое падение напряжения, составляющее 0,6 В, увеличилось вдруг до большой величины. Стоит только снизить напряжение ниже оговоренного – стабилитрон опять запирается и больше не участвует в работе схемы. Напряжения стабилизации могут быть самыми разными – от 2 до 300 В. Учтите, что тепловая мощность, равная произведению тока через стабилитрон на его напряжение стабилизации, выделяется на нем самом, поэтому чем выше напряжение стабилизации, тем ниже допустимый ток. В характеристиках также указывается обычно минимально допустимое значение тока, при котором стабилитрон еще «держит» нужное напряжение.

Удобно использовать двусторонние стабилитроны (которые представляют собой два обычных, соединенных анодами) для того, чтобы и в положительном и в отрицательном направлении включения характеристики были бы симметричны. Вольт‑амперная характеристика такого двустороннего стабилитрона (типа КС170) показана на рис. 7.4. Отметьте, что характеристика в области пробоя все же имеет некоторый наклон – т. е. при возрастании тока через прибор напряжение на нем не остается строго постоянным, а растет (это называется дифференциальным сопротивлением ). К тому же напряжение стабилизации меняется с температурой.

 

 

Рис. 7.4. Вольт‑амперная характеристика двустороннего стабилитрона

 

Кстати, простейший стабилитрон – это обычный диод, включенный в прямом направлении, и их часто употребляют в таком качестве. Напряжение стабилизации составит при этом, естественно, 0,6 В (для его увеличения можно включить последовательно два и более диодов). Как видно из вольт‑амперной характеристики диода (см. рис. 6.1), стабильность пресловутого напряжения 0,6 В оставляет желать лучшего (зависит и от тока, и от температуры), но во многих случаях особой стабильности и не требуется.

На рис. 7.5 приведена схема ограничителя напряжения на двух диодах (если требуется более высокое напряжение ограничения, их можно заменить на стабилитроны или на один двусторонний стабилитрон). Эту схему удобно применять, например, для защиты высокоомного входа микрофонного усилителя – нормальное напряжение с микрофона составляет несколько милливольт, и диоды никак не влияют на работу схемы, поскольку таким маленьким напряжением не открываются. Но если микрофон присоединен через длинный кабель, то на входе могут создаваться помехи от промышленного оборудования, от поднесенного к неподключенному входу пальца, или, скажем, от грозовых разрядов, которые сильно превышают указанные милливольты и могут вывести из строя каскады усилителя. В приведенной схеме такие помехи любой полярности замыкаются через диоды, и входное напряжение не может превысить 0,6–0,7 В ни при каких условиях.

 

 

Рис. 7.5. Схема для защиты входа микрофонного усилителя

 

У внимательного читателя может возникнуть вопрос – ведь согласно вольт‑амперной характеристике и стабилитрона, и диода ток при превышении соответствующего напряжения растет очень быстро, так не сгорят ли эти входные диоды при наличии высоковольтной помехи? Ответ прост – энергия помехи обычно очень мала, поэтому ток хоть и может быть достаточно велик, но действует на протяжении очень короткого промежутка времени, а такое воздействие и диоды, и стабилитроны выдерживают без последствий.

Стабилитроны в чистом виде хороши в качестве ограничителей напряжения, а для формирования действительно стабильного напряжения (например, опорного для АЦП и ЦАП) следует применять специальные меры для стабилизации тока через стабилитрон и одновременно обращать внимание на стабильность его температурных характеристик. Хотя и существуют специальные прецизионные стабилитроны, но все же, если вам нужен действительно качественный результат, то лучше применять интегральные стабилизаторы , которые дают на выходе гораздо более стабильное напряжение. Например, интегральный стабилизатор типа МАХ873, который в диапазоне 4‑30 В на входе дает на выходе ровно 2,5 В, обладает еще и весьма высокой стабильностью – если даже положить на него паяльник (тем самым нагрев его градусов до 250), то напряжение на выходе этого стабилизатора и не шелохнется. В современной интегральной технике обычно источники опорного напряжения встраивают прямо в нужные микросхемы, но часто предусматривают вход и внешнего такого источника, потому что вы всегда можете захотеть изобрести что‑нибудь получше.

 

 








Дата добавления: 2016-05-11; просмотров: 1677;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.