Пример устройства грозозащиты

Рассмотрим УГЗ для бытового применения. На металооксидных варисторах, хотя они и обладают высоким быстродействием и очень низкой ценой, не способны надежно защитить оборудование на неэкранированных воздушных линиях. Остаточное напряжение на них может в несколько раз превышать предельно допустимое для защищаемой аппаратуры. Это объясняется неидеальной вольт-амперной характеристикой варисторов и зависимостью напряжения от амплитуды импульса тока, протекающего через них. Необходимо также учитывать, что защитные элементы постепенно изменяют свои параметры, деградируют если через них протекает ток, близкий к предельному. В этом случае у варисторов уменьшается внутреннее сопротивление и они, в конце концов, замыкают защищаемую линию. Практически через пару лет эксплуатации на воздушных линиях защитные свойства приборов теряются и увеличиваются потери, поэтому становится невозможным их применение в высокоскоростных сетях на значительных расстояниях.

Во многих УГЗ отечественного производства в качестве разрядников используют либо неоновые лампы, либо «неонки» от стартеров ламп дневного света. Это обусловлено в основном низкой стоимостью подобных защитных элементов. Но такие решения не очень удачны, поскольку неоновые лампы обладают большим сопротивлением при пробое и невысоким быстродействием.

Продолжительные испытания неэкранированной ЛВВП 100-мегабитной сети длиной сто метров, протянутой между зданиями, показали, что неплохо справляется со своими обязанностями устройство, схема которого показана на рисунке 3.1.

Рисунок 3.1. Схема устройства грозозащиты

 

Оно представляет собой многофазный диодный мост на диодах VD1 – VD16, в диагональ включен защитный диод VD17, ограничивающий напряжение между любыми двумя проводниками линии на уровне около 8 В. Применение ограничительных диодов фирмы Transil обусловлено существенными отличиями параметров таких приборов от стабилитронов.

Например, время срабатывания ограничительного диода не превышает нескольких пикосекунд, а пиковая рассеиваемая мощность (в течение 1 мс) составляет 1500 Вт.

К разъему XS1 подключают линию, а к разъему XS2 – сетевое оборудование. Кабель, соединяющий УГЗ с сетевым оборудованием, должен быть минимальной длины. Каждый проводник информационного кабеля соединен с землей через газонаполненные разрядники F1 – F4, которые обеспечивают отвод потенциала статического электричества, превышающего 90 В. Специализированные разрядники Epcos Т83-A90X допускают прохождение импульсного тока 10 кА длительностью 8/20 мкс, характерного для грозового разряда. Сдвоенные разрядники применены, исходя только из экономических соображений, вместо них можно использовать любые, удовлетворяющие выше требованиям. Вместо диодов 1N4007 (VD1 – VD16) можно использовать любые аналоговые выпрямительные диоды импортного и отечественного производства с допустимым обратным напряжением не менее 1000 В, способные работать на частотах выше 10 кГц.

УГЗ собрано на печатной плате из двухсторонне фольгированного стеклотекстолита толщиной 1,5 мм. Фольга на плате со стороны выполняет функцию экрана, ее удаляют только около выводов деталей, зенкуя отверстия. Средний вывод разрядников припаивают непосредственно к фольге со стороны деталей.

Заземляющий проводник вставляют в отверстие диаметром 2 мм и припаивают к обеим сторонам платы. Для уменьшения перекрестных наводок перемычки 1 и 2, 3 и 6, 4 и 5, 7 и 8 можно попарно свить двумя-тремя витками. Устройство смонтировано в корпусе стандартной двойной розетки RG45В. Поскольку в этой розетке нумерация выводов разъемов XS1 и XS2 перевернута относительно друг друга, пришлось на печатной плате использовать перемычки. В случае другого варианта монтажа УГЗ перемычки можно исключить. Штатные ножевые разъемы с платы розетки удаляют, а вместо них запаивают изогнутые штыри, на которые монтируют плату УГЗ.

Если нет необходимости в защите всех восьми проводников кабеля, УГЗ можно собрать по упрощенной схеме, показанной на рисунке 3.2. Неиспользуемые проводники соединяют вместе и через разрядник F2 (Epcos N81-A90X) подключают к заземлению.

Рисунок 3.2 - Схема устройства грозозащиты

 

Для защиты источников питания от коротких всплесков напряжения в сети 220 В применяют устройство, схема которого показана на рисунке 3.3. Его включают в разрыв сетевого провода ближе к блоку питания, например, встраивают в сетевую розетку.

 

Рисунок 3.3 - Схема защиты источников питания

 

Если длина низковольтной (9 ÷ 12 В) цепи питания аппаратуры составляет несколько метров и более, например, питание подводят по свободным парам или неэкранированным проводам, то необходимо установить УГЗ, которые собирают по схеме рисунка 3.1, отличающийся тем, что вместо двух используют только один ограничительный диод 1,5КЕ18, включенный катодом к плюсу питания. Устройство подключают возможно ближе к активному оборудованию в разрыв низковольтной цепи питания постоянного тока. Все виды УГЗ требуют обязательного подключения к заключению, будем считать, что это, в нашем случае, одно и то же. При его отсутствии все мероприятия по грозозащите практически сводятся к нулю.

Согласно правилам устройства электроустановок (ПУЭ), электрическая сеть в жилых домах состоит из фазы L рабочего нуля N и защитного нуля (РЕ), подключаемого к корпусу распределительного щита на лестничной площадке к среднему контакту розетки в квартире. Проверить его наличие можно, подключив лампу накаливания на напряжение 220 В относительно фазы сначала к нулевому проводу, затем к среднему контакту розетки. В обоих случаях лампа должна гореть ярко и ровно, если при подключении лампы к среднему контакту произойдет срабатывание устройства защитного отключения (УЗО) в щите, это лишь подтвердит наличие защитного нуля.

Если же в помещение защитный нуль не подведен, его придется провести самому. Для этого потребуется провод сечением не менее 1,5 мм2, чем больше, тем лучше. Один конец провода закрепляют под любой свободный болт шины, соединенной с корпусом соединительного щита, второй соединяют с заземляющим контактом розетки или УГЗ, Использовать в качестве защитного заземления батарею отопления или водопроводные трубы не допустимо. Одна из причин – высокое сопротивление подобного «заземления». Кроме того, в некоторых случаях потенциал на батарее может быть отличен от нуля, например, если сосед использует трубы в качестве рабочего нуля из-за разрыва нулевого проводника в проводке, что категорически запрещено.

И хотя в подвале здания теоретически должна существовать система выравнивания потенциалов, на практике встречается всякое.

В сельские дома напряжением 220 В подводят воздушными линиями электропередачи, и использовать в качестве защитного рабочий нуль опасно. При возникновении аварийной ситуации (обрыв нулевого провода на линии электропередачи, падение дерева на линию электропередачи и т.д.) на нулевом проводе возможно появление потенциала, отличного от нуля, вплоть для фазного напряжения.

В этом случае, в качестве устройства защитного зануления, можно использовать естественные заземлители. Пункт 1.7.70 ПУЭ по этому поводу гласит: «В качестве естественных заземлений рекомендуется использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих и взрывчатых газов и смесей, канализации и центрального отопления; обсадные трубы скважин: металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей; металлические шунты гидротехнических сооружений, водоводы, затворы и т.п; свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей не допускается использовать в качестве естественных заземлителей. Если оболочки кабелей служат единственными заземлителями, то в расчете заземляющих землей они должны учитываться при количестве кабелей не менее двух; заземлители опор высоковольтных линий (ВЛ), соединенные с заземляющим устройством электроустановки с помощью грозозащитного троса ВЛ, если трос не изолирован от опор ВЛ; нулевые провода ВЛ до 1 кВ с повторными заземлителями при количестве ВЛ не менее двух; рельсовые пути магистральных неэлектрофицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами».

Также согласно ПУЭ «не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий…», т.е. заземлять (занулять) проводящие траверсы, подвеса кабелей и неиспользуемые проводники в кабеле необходимо только с одного конца. Дело в том, что при близком грозовом разряде в землю значительно изменяется потенциал заземляющих устройств, о чем было сказано выше. Кроме того, разность потенциалов между удаленными точками заземления может быть очень большой и при «жестком» заземлении с обоих концов, через кабели и аппаратуру возможно протекание значительного уравнивающего тока.

УГЗ питающих и информационных линий, аналогичные описанным, можно использовать для защиты ЛВВП, но и телефонных линий противопожарной и охранной сигнализации, систем видеонаблюдения и прочих, удаленных на расстояние более нескольких десятков метров информационных и питающих линий активного оборудования, особенно эксплуатируемого на открытом воздухе (таблица 3.2).

Таблица 3.2. Сравнение параметров различных типов защит

Достоинства Недостатки
Аналог АРС
Дешевизна. Обкатанность. Работает на 100 мегабит. Практически не влияет на дальнобойность. Не обеспечивает 100 % надежности. Не масштабируется.
     

Продолжение таблицы 3.2

Защита на трансформаторах
Незначительно дороже копии АРС. Гальваническая развязка. Промежуточный заземленный контур. Работает на 100 мегабит. Масштабируется, есть общие детали. Возможно снижение дальности. Не прошла полностью испытаний.
Защита на оптронах
Оптронная развязка. 100 % защита. Масштабируется, есть общие детали. Возможно снижение дальности. Не прошла полностью испытаний. Не работает на 100 мегабит. Высокая стоимость.

 

 








Дата добавления: 2015-08-11; просмотров: 2963;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.