Основные источники электромагнитного поля

Среди основных источников ЭМП можно перечислить:

• электротранспорт (трамваи, троллейбусы, поезда, …);

• линии электропередач (городского освещения, высоковольтные, …);

• электропроводка (внутри зданий, телекоммуникации, …);

• бытовые электроприборы;

• теле- и радиостанции (транслирующие антенны);

• спутниковая и сотовая связь (транслирующие антенны);

• радары;

• персональные компьютеры.

Электротранспорт. Транспорт на электрической тяге – электропоезда, троллейбусы, трамваи и т.п. – является относительно мощным источником магнитного поля в диапазоне частот 0 ÷ 1000 Гц. Максимальные значения плотности потока магнитной индукции В в пригородных электричках достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл.

Линии электропередач(ЛЭП). Провода работающей ЛЭП создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии, достигает десятков метров. Дальность распространения электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП – например ЛЭП 220 кВ), чем выше напряжение – тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течение времени работы ЛЭП. Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течение суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие. Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля. У растений распространены аномалии развития – меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакции только у гиперчувствительных людей или у больных некоторыми видами аллергии.

В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы, несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения не нормируется. Большая часть ЛЭП строилась без учета этой опасности. На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или «нормальный» уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 ÷ 0,3 мкТл. Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов, границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля – 1 кВ/м (таблицы 1.2 ÷ 1.4).

Таблица 1.2. Границы санитарно-защитных зон для ЛЭП

Напряжение ЛЭП, кВ
Размер санитарно-защитной (охранной) зоны, м

 

Таблица 1.3. Границы санитарно-защитных зон для ЛЭП в городе

Напряжение ЛЭП, кВ < 20 150 ÷ 220 330 ÷ 500
Размер санитарно-защитной зоны, м

 

Таблица 1.4. Предельно допустимые уровни воздействия электрического поля ЛЭП

ПДУ, кВ/м Условия облучения
0,5 Внутри жилых зданий
1,0 На территории зоны жилой застройки
5,0 В населенной местности вне зоны жилой застройки (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов), а также на территории огородов и садов
10,0 На участках пересечения воздушных линий электропередачи с автомобильными дорогами I ÷ IV категорий

 

Продолжение таблицы 1.4

15,0 В ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья)
20,0 В труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения

 

К размещению высоковольтных линий (ВЛ) ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м, соответственно. Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно: 330 кВ – два провода, 500 кВ – три провода, 750 кВ – четыре провода; ниже 330 кВ – по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ – 10 ÷ 15 шт., 110 кВ – 6 ÷ 8 шт., 35 кВ – 3 ÷ 5 шт., 10 кВ и ниже – 1 шт.

Предельно допустимые уровни (ПДУ). В пределах санитарно-защитной зоны ВЛ запрещается:

• размещать жилые и общественные здания и сооружения;

• устраивать площадки для стоянки и остановки всех видов транспорта;

• размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;

• производить операции с горючим, выполнять ремонт машин и механизмов.

Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда. В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках. В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее двух метров.

Электропроводка. Наибольший вклад в электромагнитную обстановку жилых помещений в диапазоне промышленной частоты 50 Гц вносит электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, а также распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты, вызываемый протекающим электротоком. Уровень электрического поля промышленной частоты при этом не высокий и не превышает ПДУ для населения 500 В/м.

В настоящее время многие специалисты считают предельно допустимой величину магнитной индукции равной 0,2 ÷ 0,3 мкТл. При этом считается, что развитие заболеваний – прежде всего лейкемии – очень вероятно при продолжительном облучении человека полями более высоких уровней (несколько часов в день, особенно в ночные часы, в течение периода более года).

Рекомендации по защите.

Основная мера защиты – предупредительная:

• необходимо исключить продолжительное пребывание (регулярно по несколько часов в день) в местах повышенного уровня магнитного поля промышленной частоты;

• кровать для ночного отдыха максимально удалять от источников облучения, расстояние до распределительных шкафов, силовых электрокабелей должно быть 2,5 ÷ 3 метра;

• если в помещении или в смежном есть какие-то неизвестные кабели, распределительные шкафы, трансформаторные подстанции – удаление должно быть максимально возможным, оптимально – промерить уровень ЭМП до того, как жить в таком помещении;

• при необходимости установить полы с электроподогревом выбирать системы с пониженным уровнем магнитного поля.

Бытовая электротехника. Все бытовые приборы, работающие с использованием электрического тока, являются источниками ЭМП. Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой «без инея», кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа. Значения магнитного поля тесно связаны с мощностью прибора – чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м. (таблица 1.5 ÷ 1.6).

При размещении в квартире бытовой техники руководствуйтесь следующими принципами: размещайте бытовые электроприборы по возможности дальше от мест отдыха, не располагайте бытовые электроприборы поблизости и не ставьте их друг на друга.

Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи ЭМП, называемое также микроволновым излучением или СВЧ-излучением. Рабочая частота СВЧ-излучения микроволновых печей составляет 2,45 ГГц. Именно этого излучения и опасаются многие люди. Однако, современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает ЭМП вырываться за пределы рабочего объема. Однако, нельзя говорить, что поле совершенно не проникает вне микроволновой печи.

 

Таблица 1.5. Уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м

Бытовой электроприбор Уровень магнитного поля 50 Гц, мкТл
Пылесос 0,2 ÷ 2,2
Дрель 2,2 ÷ 5,4
Утюг ≤ 0,4
Миксер 0,5 ÷ 2,2
Телевизор ≤ 2,0
Люминесцентная лампа 0,5 ÷ 2,5
Кофеварка ≤ 0,2
Стиральная машина ≤ 0,3
Микроволновая печь 4,0 ÷ 12
Электрическая плита 0,4 ÷ 4,5

 

По разным причинам часть ЭМП, предназначенного для приготовления продукта, проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы. Для обеспечения безопасности при использовании печей в быту действуют санитарные нормы, ограничивающие предельную величину утечки СВЧ-излучения микроволновой печи. Называются они «Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами» и имеют обозначение СН № 2666-83. Согласно этим санитарным нормам, величина плотности потока энергии ЭМП не должна превышать 10 мкВт/см2 на расстоянии 50 см от любой точки корпуса печи при нагреве одного литра воды. На практике практически все новые современные микроволновые печи выдерживают это требование с большим запасом. Тем не менее, при покупке новой печи надо убедиться, что в сертификате соответствия зафиксировано соответствие вашей печи требованиям этих санитарных норм. Надо помнить, что со временем степень защиты может снижаться, в основном из-за появления микрощелей в уплотнении дверцы. Это может происходить как из-за попадания грязи, так и из-за механических повреждений. Поэтому дверца и ее уплотнение требует аккуратности в обращении и тщательного ухода.

Срок гарантированной стойкости защиты от утечек ЭМП при нормальной эксплуатации – несколько лет.

Через пять – шесть лет эксплуатации целесообразно проверить качество защиты, для чего пригласить специалиста из специально аккредитованной лаборатории по контролю ЭМП. Кроме СВЧ-излучения работу микроволновой печи сопровождает интенсивное магнитное поле, создаваемое током промышленной частоты 50 Гц, протекающим в системе электропитания печи. При этом микроволновая печь является одним из наиболее мощных источников магнитного поля в квартире.

 

 

Таблица 1.6. Предельно допустимые уровни ЭМП для потребительской продукции, являющейся источником ЭМП

Источник Диапазон Значение ПДУ Условия измерения
Индукцион-ные печи 20 ÷ 22 кГц 500 В/м 4 А/м Расстояние 0,3 м от корпуса
СВЧ печи 2,45 ГГц 10 мкВт/см2 Расстояние 0,50 ± 0,05 м от любой точки, при нагрузке 1 л воды
Видеодис-плейный терминал ПЭВМ 5 Гц ÷ 2 кГц ЕПДУ = 25 В/м ВПДУ = 250 нТл Расстояние 0,5 м вокруг монитора ПЭВМ
2 ÷ 400 кГц ЕПДУ = 2,5 В/мВ ПДУ = 25 нТл
поверхностный электростатиче- ский потенциал V = 500 В Расстояние 0,1 м от экрана монитора ПЭВМ
Прочая продукция 50 Гц Е = 500 В/м Расстояние 0,5 м от корпуса изделия
0,3 ÷ 300 кГц Е = 25 В/м
0,3 ÷ 3 МГц Е = 15 В/м
3 ÷ 30 МГц Е = 10 В/м
30 ÷ 300 МГц Е = 3 В/м
0,3 ÷ 30 ГГц ППЭ = 10 мкВт/см2

 

Теле- и радиостанции. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком. Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части. Первая часть зоны – это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны – это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны. Расположение ПРЦ может быть различным, например, в Москве и московском регионе характерно размещение в непосредственной близости или среди жилой застройки. Высокие уровни ЭМП наблюдаются на территориях, а нередко и за пределами размещения передающих радиоцентров низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМП для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ. Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов.

Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.

Радиостанции ДВ(частоты 30 ÷ 300 кГц). В этом диапазоне длина волн относительно большая (например, 2000 м для частоты 150 кГц). На расстоянии одной длины волны (и меньше) от антенны поле может быть достаточно большим, например, на расстоянии 30 м от антенны передатчика мощностью 500 кВт, работающего на частоте 145 кГц, электрическое поле может быть выше 630 В/м, а магнитное – выше 1,2 А/м.

Радиостанции СВ(частоты 300 кГц ÷ 3 МГц). Данные для радиостанций этого типа говорят, что напряженность электрического поля на расстоянии 200 м может достигать 10 В/м, на расстоянии 100 м – 25 В/м, на расстоянии 30 м – 275 В/м (приведены данные для передатчика мощностью 50 кВт).

Радиостанции КВ(частоты 3 ÷ 30 МГц). Передатчики радиостанций КВ имеют обычно меньшую мощность. Однако они чаще размещаются в городах, могут быть размещены даже на крышах жилых зданий на высоте 10 ÷ 100 м. Передатчик мощностью 100 кВт на расстоянии 100 м может создавать напряженность электрического поля 44 В/м и магнитного поля 0,12 Ф/м.

Телевизионные передатчикирасполагаются, как правило, в городах. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт. Проблема оценки уровня ЭМП телевизионных передатчиков актуальна в связи с резким ростом числа телевизионных каналов и передающих станций.

Основной принцип обеспечения безопасности – соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля. Каждый радиопередающий объект имеет Санитарный паспорт, в котором определены границы санитарно-защитной зоны. Только при наличии этого документа территориальные органы Госсанэпиднадзора разрешают эксплуатировать радиопередающие объекты. Периодически они производят контроль электромагнитной обстановки на предмет ее соответствия установленным ПДУ.

Спутниковая связь. Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженный узконаправленный основной луч – главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни поля на большом удалении.

Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м2. Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

Сотовая связь. Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения в УВЧ диапазоне. Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или «соты», радиусом обычно 0,5 ÷ 10 км . Базовые станции (БС) поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта (таблица 17) БС излучают электромагнитную энергию в диапазоне частот 463 ÷ 1880 МГц. Антенны БС устанавливаются на высоте 15 ÷ 100 м от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т.д.) или на специально сооруженных мачтах. Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМП. Исходя из технологических требований построения системы сотовой связи, диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком «луче». Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы.

БС являются видом передающих радиотехнических объектов, мощность излучения которых (загрузка) не является постоянной 24 часа в сутки. Загрузка определяется наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения БС, дня недели и др. В ночные часы загрузка БС практически равна нулю, т.е. станции в основном «молчат».

 

Таблица 1.7. Краткие технические характеристики стандартов системы сотовой радиосвязи

Наименование стандарта Диапазон рабочих частот БС, МГц Диапазон рабочих частот МРТ, МГц Максимальная излучаемая мощность БС, Вт Максимальная излучаемая мощность
МРТ Радиус «соты» NMT-450. Аналоговый 463 ÷ 467,5 453 ÷ 457,5 1 Вт; 1 ÷ 40 м
AMPS. Аналоговый 869 ÷ 894 824 ÷ 849 0,6 Вт; 2 ÷ 20 км
D-AMPS (IS-136). Цифровой 869 ÷ 894 824 ÷ 849 0,2 Вт; 0,5 ÷ 20 км
CDMA. Цифровой 869 ÷ 894 824 ÷ 849 0,6 Вт; 2 ÷ 40 км
GSM-900. Цифровой 925 ÷ 965 890 ÷ 915 0,25 Вт; 0,5 ÷ 35 км
GSM-1800 (DCS). Цифровой 1805 ÷ 1880 1710 ÷ 1785 0,125 Вт; 0,5 ÷ 35 км

 

Мобильный радиотелефон(МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 ÷ 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи «мобильный радиотелефон – базовая станция», т.е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125 ÷ 1 Вт, однако в реальной обстановке она обычно не превышает 0,05 ÷ 0,2 Вт. Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран на биологических объектах (в том числе, на добровольцах), привели к неоднозначным, иногда противоречащим, результатам. Неоспоримым остается тот факт, что организм человека «откликается» на наличие излучения сотового телефона.

При работе мобильного телефона электромагнитное излучение воспринимается не только приемником базовой станции, но и телом пользователя, и, в первую очередь, его головой. Что при этом происходит в организме человека, насколько это воздействие опасно для здоровья? Однозначного ответа на этот вопрос до сих пор не существует. Однако эксперимент ученых показал, что мозг человека не только ощущает излучение сотового телефона, но и различает стандарты сотовой связи.

Радиолокационные станцииоснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси. Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин – излучение, 30 мин – пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд. Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м2. Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия - в жилых районах городов, в черте которых размещаются аэропорты.

Персональные компьютеры. Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения информации на электронно-лучевой трубке. Ниже перечислены основные факторы его неблагоприятного воздействия.

Эргономические параметры экрана монитора:

• снижение контраста изображения в условиях интенсивной внешней засветки;

• зеркальные блики от передней поверхности экранов мониторов;

• наличие мерцания изображения на экране монитора.

Излучательные характеристики монитора:

• электромагнитное поле монитора в диапазоне частот 20 Гц ÷ 1000 МГц;

• статический электрический заряд на экране монитора;

• ультрафиолетовое излучение в диапазоне 200 ÷ 400 нм;

• инфракрасное излучение в диапазоне 1 050 нм ÷ 1 мм;

• рентгеновское излучение > 1,2 кэВ.

Компьютер как источник переменного электромагнитного поля.Основными составляющими частями персонального компьютера (ПК) являются: системный блок (процессор) и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер и т.п. Каждый персональный компьютер включает средство визуального отображения информации, называемое по-разному – монитор, дисплей. Как правило, в его основе – устройство на основе электронно-лучевой трубки. ПК часто оснащают сетевыми фильтрами (например, типа «Pilot»), источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя.

 

Таблица 1.8. Диапазон частот элементов ПК

Источник Диапазон частот (первая гармоника)
Монитор, сетевой трансформатор блока питания 50 Гц, статический преобразователь напряжения в импульсном блоке питания 20 ÷ 100 кГц
Блок кадровой развертки и синхронизации 48 ÷ 160 Гц
Блок строчной развертки и синхронизации 15 ÷ 110 кГц
Ускоряющее анодное напряжение монитора (только для мониторов с ЭЛТ) 0 Гц (электростатика)
Системный блок (процессор) 50 Гц ÷ 1000 МГц
Устройства ввода/вывода информации 0 ÷ 50 Гц
Источники бесперебойного питания 50 Гц 20 ÷ 100 кГц

Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот 0 ÷ 1000 МГц (таблица 1.9). Электромагнитное поле имеет электрическую (Е) и магнитную (Н) составляющие, причем взаимосвязь их достаточно сложна, поэтому оценка Е и Н производится раздельно.

 

Таблица 1.9. Максимальные зафиксированные на рабочем месте значения ЭМП

Вид поля Диапазон частот Единица измерения напряженности поля Значение напряженности поля по оси экрана вокруг монитора
Электрическое поле 100 кГц ÷ 300 МГц В/м 17,0 ÷ 24,0
0,02 ÷ 2 кГц 150,0 ÷ 155,0
2 ÷ 400 кГц 14,0 ÷ 16,0
Магнитное поле 100 кГц ÷ 300 МГц мА/м  
0,02 ÷ 2 кГц 550,0 ÷ 600,0
2 ÷ 400 кГц 35,0 ÷ 35,0
Электростати-ческое поле   кВ/м 22,0

 

В части электромагнитных полей стандарту MPR II соответствуют российские санитарные нормы СанПиН 2.2.2.542-96. «Гигиенические требования к видеодисплейным терминалам, персональным ЭВМ и организации работ».

Средства защиты пользователей от ЭМП. В основном из средств защиты предлагаются защитные фильтры для экранов мониторов. Они используются для ограничения действия на пользователя вредных факторов со стороны экрана монитора.

 








Дата добавления: 2015-08-11; просмотров: 8266;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.033 сек.