Наиболее загрязненных городов бывшего СССР.

Металлы приведены в порядке убывания уровня приоритетности для данного города.

1. Рудная Пристань (Приморский край) свинец, цинк, медь, марганец+ванадий, марганец.
2. Белово (Кемеровская область) цинк, свинец, медь, никель.
3. Ревда (Свердловская область) медь, цинк, свинец.
4. Магнитогорск никель, цинк, свинец.
5. Глубокое (Белоруссия) медь, свинец, цинк.
6. Усть-Каменогорск (Казахстан) цинк, медь, никель.
7. Дальнегорск (Приморский край) свинец, цинк.
8. Мончегорск (Мурманская область) никель.
9. Алаверди (Армения) медь, никель, свинец.
10. Константиновка (Украина, Донецкая обл) свинец, ртуть.

 

 


Ванадий

Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефтях, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек 0.2 - 4.5 мкг/дм3, в морской воде - в среднем 2 мкг/дм3

.

В воде образует устойчивые анионные комплексы (V4O12)4- и (V10O26)6-. В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДКв ванадия составляет 0.1 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр - 0.001 мг/дм3.

 

Висмут

Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм3, в морских водах - 0.02 мкг/дм3.ПДКв составляет 0.1 мг/дм3

 

Железо

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН, Eh и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0.45 мк. Она представляет собой преимущественно железосодержащие минералы, гидрат оксида железа и соединения железа, сорбированные на взвесях. Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплекса и комплексов с растворенными неорганическими и органическими веществами природных вод. В ионной форме мигрирует главным образом Fe(II), а Fe(III) в отсутствие комплексообразующих веществне может в значительных количествах находиться в растворенном состоянии.

Железо обнаруживается в основном в водах с низкими значениями Eh.

В результате химического и биохимического (при участии железобактерий) окисления Fe(II) переходит в Fe(III), который, гидролизуясь, выпадает в осадок в виде Fe(OH)3. Как для Fе(II), так и для Fe(III) характерна склонность к образованию гидроксокомплексов типа [Fe(OH)2]+, [Fe2(OH)2]4+, [Fe(OH)3]+, [Fe2(OH)3]3+, [Fe(OH)3]- и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил. Основной формой нахождения Fe(III) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами. При рН = 8.0 основной формой является Fe(OH)3 .Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fe(OH)3 и комплексы с органическими веществами.

Содержание железа в поверхностных водах суши составляет десятые доли миллиграмма, вблизи болот - единицы миллиграммов. Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот - гуматами. Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм3) наблюдаются в подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается окислением Fe(II) в Fе(III) и выпадением последнего в виде Fe(OH)3.

Содержание железа в воде выше 1-2 мг Fe/л значительно ухудшает органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования в технических целях. ПДКв железа составляет 0.3 мг Fe/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр для железа - 0.1 мг/дм3

 

Кадмий

В природные воды поступает при выщелачивании почв, полиметаллических и медных руд, в результате разложения водных организмов, способных его накапливать. Соединения кадмия выносятся в поверхностные воды со сточными водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда химических предприятий (производство серной кислоты), гальванического производства, а также с шахтными водами. Понижение концентрации растворенных соединений кадмия происходит за счет процессов сорбции, выпадения в осадок гидроксида и карбоната кадмия и потребления их водными организмами.

Растворенные формы кадмия в природных водах представляют собой главным образом минеральные и органо-минеральные комплексы. Основной взвешенной формой кадмия являются его сорбированные соединения. Значительная часть кадмия может мигрировать в составе клеток гидробионтов.

В речных незагрязненных и слабозагрязненных водах кадмий содержится в субмикрограммовых концентрациях, в загрязненных и сточных водах концентрация кадмия может достигать десятков микрограммов в 1 дм3.

Соединения кадмия играют важную роль в процессе жизнедеятельности животных и человека. В повышенных концентрациях токсичен, особенно в сочетании с другими токсичными веществами.

ПДКв составляет 0.001 мг/дм3, ПДКвр — 0.0005 мг/дм3 (лимитирующий признак вредности — токсикологический).

 

Кобальт

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов.

Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН. Растворенные формы представлены в основном комплексными соединениями, в т.ч. с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта.

Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона). Входя в состав витамина В12, кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты, активизирует биосинтез и повышает содержание белкового азота в растениях. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм3, среднее содержание в морской воде 0.5 мкг/дм3. ПДКв составляет 0.1 мг/дм3, ПДКвр 0.01 мг/дм3.

 

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn(II) до MnO2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, - концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах - взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами. Mn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединения Mn(II) с органическими веществами обычно менее прочны, чем с другими переходными металлами. К ним относятся соединения с аминами, органическими кислотами, аминокислотами и гумусовыми веществами. Mn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствиии сильных комплексообразователей, Mn(YII) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в подземных - n.102 - n.103 мкг/дм3.

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации CO2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения и распределения марганца в природных водах.

Для водоемов санитарно-бытового использования установлена ПДКв (по иону марганца), равная 0.1 мг/дм3.

Ниже представлены карты распределения средних концентраций металлов: марганца, меди, никеля и свинца, построенные по данным наблюдений за 1989 - 1993 гг. в 123 городах. Использование более поздних данных предполагается нецелесообразным, поскольку в связи с сокращением производства значительно снизились концентрации взвешенных веществ и соответственно, металлов.

Влияние на здоровье. Многие металлы являются составляющей пыли и оказывают существенное влияние на здоровье.

Марганец поступает в атмосферу от выбросов предприятий черной металлургии (60% всех выбросов марганца), машиностроения и металлообработки (23%), цветной металлургии (9%), многочисленных мелких источников, например, от сварочных работ.

Высокие концентрации марганца приводят к появлению нейротоксических эффектов, прогрессирующего поражения центральной нервной системы, пневмонии.
Самые высокие концентрации марганца (0,57 - 0,66 мкг/м3) наблюдаются в крупных центрах металлургии: Липецке и Череповце, а также в Магадане. Больше всего городов с высокими концентрациями Mn (0,23 - 0,69 мкг/м3) сосредоточено на Кольском полуострове: Заполярный, Кандалакша, Мончегорск, Оленегорск (см. карту).

За 1991 - 1994 гг. выбросы марганца от промышленных источников снизились на 62%, средние концентрации – на 48%.

 
 

Медь

Медь - один из важнейших микроэлементов. Физиологическая активность меди связана главным образом с включением ее в состав активных центров окислительно-восстановительных ферментов. Недостаточное содержание меди в почвах отрицательно влияет на синтез белков, жиров и витаминов и способствует бесплодию растительных организмов. Медь участвует в процессе фотосинтеза и влияет на усвоение азота растениями. Вместе с тем, избыточные концентрации меди оказывают неблагоприятное воздействие на растительные и животные организмы.

Содержание меди в природных пресных водах колеблется от 2 до 30 мкг/дм3, в морских водах - от 0.5 до 3.5 мкг/дм3. Повышенные концентрации меди (до нескольких граммов в литре) характерны для кислых рудничных вод.

В природных водах наиболее часто встречаются соединения Cu(II). Из соединений Cu(I) наиболее распространены труднорастворимые в воде Cu2O, Cu2S, CuCl. При наличии в водной среде лигандов наряду с равновесием диссоциации гидроксида необходимо учитывать образование различных комплексных форм, находящихся в равновесии с акваионами металла.

Основным источником поступления меди в природные воды являются сточные воды предприятий химической, металлургической промышленности, шахтные воды, альдегидные реагенты, используемые для уничтожения водорослей. Медь может появляться в результате коррозии медных трубопроводов и других сооружений, используемых в системах водоснабжения. В подземных водах содержание меди обусловлено взаимодействием воды с горными породами, содержащими ее (халькопирит, халькозин, ковеллин, борнит, малахит, азурит, хризаколла, бротантин).

Предельно допустимая концентрация меди в воде водоемов санитарно-бытового водопользования составляет 0.1 мг/дм3 (лимитирующий признак вредности — общесанитарный), в воде рыбохозяйственных водоемов - 0.001 мг/дм3.

Город M
Норильск 2382,3
Ревда 1162,9
Мончегорск 933,7
Красноуральск 653,0
Кольчугино 140,1
Никель 81,8
Заполярный 81,0

Выбросы М (тыс.т/год) оксида меди и среднегодовые концентрации q (мкг/м3) меди.

Медь поступает в воздух с выбросами металлургических производств. В выбросах твердых веществ она содержится в основном в виде соединений, преимущественно оксида меди.

На долю предприятий цветной металлургии приходится 98,7 % всех антропогенных выбросов этого металла, из них 71% осуществляется предприятиями концерна “Норильский никель”, расположенными в Заполярном и Никеле, Мончегорске и Норильске, а еще примерно 25% выбросов меди осуществляются в Ревде, Красноуральске, Кольчугино и в других.

Высокие концентрации меди приводят к интоксикации, анемии и заболеванию гепатитом.

Как видно из карты, самые высокие концентрации меди отмечены в городах Липецк и Рудная Пристань. Повышены также концентрации меди в городах Кольского полуострова, в Заполярном, Мончегорске, Никеле, Оленегорске, а также в Норильске.

Выбросы меди от промышленных источников снизились на 34%, средние концентрации – на 42%.

Молибден

Соединения молибдена попадают в поверхностные воды в результате выщелачивания их из экзогенных минералов, содержащих молибден. Молибден попадает в водоемы также со сточными водами обогатительных фабрик, предприятий цветной металлургии. Понижение концентраций соединений молибдена происходит в результате выпадения в осадок труднорастворимых соединений, процессов адсорбции минеральными взвесями и потребления растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО42-. Весьма вероятно существование его в виде органоминеральных комплексов. Возможность некоторого накопления в коллоидном состоянии вытекает из того факта, что продукты окисления молибденита представляют рыхлые тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2.1 до 10.6 мкг/дм3. В морской воде содержится в среднем 10 мкг/дм3 молибдена.

В малых количествах молибден необходим для нормального развития растительных и животных организмов. Молибден входит в состав фермента ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном количестве, что вызывает отрицательные реакции организма. В повышенных концентрациях молибден вреден. При избытке молибдена нарушается обмен веществ.

Предельно допустимая концентрация молибдена в водоемах санитарно-бытового использования составляет 0.25 мг/дм3.

 

Мышьяк

В природные воды мышьяк поступает из минеральных источников, районов мышьяковистого оруднения (мышьяковый колчедан, реальгар, аурипигмент), а также из зон окисления пород полиметаллического, медно-кобальтового и вольфрамового типов. Некоторое количество мышьяка поступает из почв, а также в результате разложения растительных и животных организмов. Потребление мышьяка водными организмами является одной из причин понижения концентрации его в воде, наиболее отчетливо проявляющегося в период интенсивного развития планктона.

Значительные количества мышьяка поступают в водные объекты со сточными водами обогатительных фабрик, отходами производства красителей, кожевенных заводов и предприятий, производящих пестициды, а также с сельскохозяйственных угодий, на которых применяются пестициды.

В природных водах соединения мышьяка находятся в растворенном и взвешенном состоянии, соотношение между которыми определяется химическим составом воды и значениями рН. В растворенной форме мышьяк встречается в трех- и пятивалентной форме, главным образом в виде анионов.

В речных незагрязненных водах мышьяк находится обычно в микрограммовых концентрациях. В минеральных водах его концентрация может достигать нескольких миллиграммов в 1 дм3, в морских водах в среднем содержится 3 мкг/дм3, в подземных - встречается в концентрациях n.105 мкг/дм3. Соединения мышьяка в повышенных концентрациях являются токсичными для организма животных и человека: они тормозят окислительные процессы, угнетают снабжение кислородом органов и тканей.

ПДКв мышьяка составляет 0.05 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический) и ПДКвр - 0.05 мг/дм3.

 

Никель

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni2+) примерно в 2 раза более токсичны, чем его комплексные соединения.

 
 

В речных незагрязненных и слабозагрязненных водах концентрация никеля колеблется обычно от 0.8 до 10 мкг/дм3; в загрязненных она составляет несколько десятков микрограммов в 1 дм3. Средняя концентрация никеля в морской воде 2 мкг/дм3, в подземных водах - n.103 мкг/дм3. В подземных водах, омывающих никельсодержащие горные породы, концентрация никеля иногда возрастает до 20 мг/дм3.

Содержание никеля в водных объектах лимитируется: ПДКв составляет 0.1 мг/дм3 (лимитирующий признак вредности — общесанитарный), ПДКвр — 0.01 мг/дм3 (лимитирующий признак вредности — токсикологический).

Никель поступает в атмосферу от предприятий цветной металлургии, на долю которых приходится 97% всех выбросов никеля, из них 89% на долю предприятий концерна “Норильский никель”, расположенных в Заполярном и Никеле, Мончегорске и Норильске.

Повышенное содержание никеля в окружающей среде приводит к появлению эндемических заболеваний, бронхиального рака. Соединения никеля относят к 1 группе канцерогенов.

 

На карте видно несколько точек с высокими средними концентрациями никеля в местах расположения концерна Норильский никель: Апатиты, Кандалакша, Мончегорск, Оленегорск.

Выбросы никеля от промышленных предприятий снизились на 28%, средние концентрации – на 35%.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м3) никеля.

 

Олово

В природные воды поступает в результате процессов выщелачивания оловосодержащих минералов (касситерит, станнин), а также со сточными водами различных производств (крашение тканей, синтез органических красок, производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограммов в 1 дм3. ПДКв составляет 2 мг/дм3.

 

Ртуть

В поверхностные воды соединения ртути могут поступать в результате выщелачивания пород в районе ртутных месторождений (киноварь, метациннабарит, ливингстонит), в процессе разложения водных организмов, накапливающих ртуть. Значительные количества поступают в водные объекты со сточными водами предприятий, производящих красители, пестициды, фармацевтические препараты, некоторые взрывчатые вещества. Тепловые электростанции, работающие на угле, выбрасывают в атмосферу значительные количества соединений ртути, которые в результате мокрых и сухих выпадений попадают в водные объекты.

Понижение концентрации растворенных соединений ртути происходит в результате извлечения их многими морскими и пресноводными организмами, обладающими способностью накапливать ее в концентрациях, во много раз превышающих содержание ее в воде, а также процессов адсорбции взвешенными веществами и донными отложениями.

В поверхностных водах соединения ртути находятся в растворенном и взвешенном состоянии. Соотношение между ними зависит от химического состава воды и значений рН. Взвешенная ртуть представляет собой сорбированые соединения ртути. Растворенными формами являются недиссоциированные молекулы, комплексные органические и минеральные соединения. В воде водных объектов ртуть может находиться в виде метилртутных соединений.

Содержание ртути в речных незагрязненных, слабозагрязненных водах составляет несколько десятых долей микрограмма в 1 дм3, средняя концентрация в морской воде 0.03 мкг/дм3, в подземных водах 1-3 мкг/дм3.

Соединения ртути высоко токсичны, они поражают нервную систему человека, вызывают изменения со стороны слизистой оболочки, нарушение двигательной функции и секреции желудочно-кишечного тракта, изменения в крови и др. Бактериальные процессы метилирования направлены на образование метилртутных соединений, которые во много раз токсичнее минеральных солей ртути. Метилртутные соединения накапливаются в рыбе и могут попадать в организм человека.

ПДКв ртути составляет 0.0005 мг/дм3 (лимитирующий признак вредности — санитарно-токсикологический), ПДКвр 0.0001 мг/дм3.

 

Свинец

Естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов. Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д. Существенными факторами понижения концентрации свинца в воде является адсорбция его взвешенными веществами и осаждение с ними в донные отложения. В числе других металлов свинец извлекается и накапливается гидробионтами.

Свинец находится в природных водах в растворенном и взвешенном (сорбированном) состоянии. В растворенной форме встречается в виде минеральных и органоминеральных комплексов, а также простых ионов, в нерастворимой - главным образом в виде сульфидов, сульфатов и карбонатов.

В речных водах концентрация свинца колеблется от десятых долей до единиц микрограммов в 1 дм3. Даже в воде водных объектов, прилегающих к районам полиметаллических руд, концентрация его редко достигает десятков миллиграммов в 1 дм3. Лишь в хлоридных термальных водах концентрация свинца иногда достигает нескольких миллиграммов в 1 дм3.

Лимитирующий показатель вредности свинца - санитарно-токсилогический. ПДКв свинца составляет 0.03 мг/дм3, ПДКвр - 0.1 мг/дм3.

Свинец содержится в выбросах предприятиями металлургии, металлообработки, электротехники, нефтехимии и автотранспорта.

Влияние свинца на здоровье происходит при вдыхании воздуха, содержащего свинец, и поступлении свинца с пищей, водой, на пылевых частицах. Свинец накапливается в теле, в костях и поверхностных тканях. Свинец влияет на почки, печень, нервную систему и органы кровообразования. Пожилые и дети особенно чувствительны даже к низким дозам свинца.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м3) свинца.

 
 

За семь лет выбросы свинца от промышленных источников снизились на 60% вследствие сокращения производства и закрытия многих предприятий. Резкое снижение промышленных выбросов не сопровождается снижением выбросов автотранспорта. Средние концентрации свинца снизились только на 41%. Различие в степени снижения выбросов и концентраций свинца можно объяснить неполным учетом выбросов от автомобилей в предыдущие годы; в настоящее время увеличилось количество автомобилей и интенсивность их движения.

 








Дата добавления: 2015-08-26; просмотров: 2227;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.032 сек.