Применение магических квадратов

В средние века для шифрования перестановкой применялись и магические квадраты.

Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

Шифруемый текст вписывали в магические квадраты в соответствии с нумерацией их клеток. Если затем выписать содержимое такой таблицы по строкам, то получится шифртекст, сформированный благодаря перестановке букв исходного сообщения. В те времена считалось, что созданные с помощью магических квадратов шифртексты охраняет не только ключ, но и магическая сила.

Пример магического квадрата и его заполнения сообщением ПРИЛЕТАЮ ВОСЬМОГО показан на рис. 4.

Рис. 4. Пример магического квадрата 4х4 и его заполнения сообщением

ПРИЛЕТАЮ ВОСЬМОГО

Шифртекст, получаемый при считывании содержимого правой таблицы по строкам, имеет вид:

ОИРМ ЕОСЮ ВТАЬ ЛГОП

Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3х3 (если не учитывать его повороты).

Количество магических квадратов 4х4 составляет уже 880, а количество магических квадратов 5х5 - около 250000.

 


Лекция 4.

Название: Криптография с открытым ключом

Криптография с открытым ключом

Алгоритм RSA

Алгоритм RSA стоит у истоков асимметричной криптографии. Он был предложен тремя исседователями-математиками Рональдом Ривестом (R.Rivest) , Ади Шамиром (A.Shamir) и Леонардом Адльманом (L.Adleman) в 1977-78 годах.

Первым этапом любого асимметричного алгоритма является создание пары ключей : открытого и закрытого и распространение открытого ключа "по всему миру". Для алгоритма RSA этап создания ключей состоит из следующих операций :

1. Выбираются два простых (!) числа p и q

2. Вычисляется их произведение n(=p*q)

3. Выбирается произвольное число e (e<n), такое, что НОД(e,(p-1)(q-1))=1, то есть e должно быть взаимно простым с числом (p-1)(q-1).

4. Методом Евклида решается в целых числах (!) уравнение e*d+(p-1)(q-1)*y=1. Здесь неизвестными являются переменные d и y – метод Евклида как раз и находит множество пар (d,y), каждая из которых является решением уравнения в целых числах.

5. Два числа (e,n) – публикуются как открытый ключ.

6. Число d хранится в строжайшем секрете – это и есть закрытый ключ, который позволит читать все послания, зашифрованные с помощью пары чисел (e,n).

Как же производится собственно шифрование с помощью этих чисел :

1. Отправитель разбивает свое сообщение на блоки, равные k=[log2(n)] бит, где квадратные скобки обозначают взятие целой части от дробного числа.

2. Подобный блок, как Вы знаете, может быть интерпретирован как число из диапазона (0;2k-1). Для каждого такого числа (назовем его mi) вычисляется выражение ci=((mi)e)mod n. Блоки ci и есть зашифрованное сообщение Их можно спокойно передавать по открытому каналу, поскольку.операция возведения в степень по модулю простого числа, является необратимой математической задачей. Обратная ей задача носит название "логарифмирование в конечном поле" и является на несколько порядков более сложной задачей. То есть даже если злоумышленник знает числа e и n, то по ci прочесть исходные сообщения mi он не может никак, кроме как полным перебором mi.

А вот на приемной стороне процесс дешифрования все же возможен, и поможет нам в этом хранимое в секрете число d. Достаточно давно была доказана теорема Эйлера, частный случай которой утвержает, что если число n представимо в виде двух простых чисел p и q, то для любого x имеет место равенство (x(p-1)(q-1))mod n = 1. Для дешифрования RSA-сообщений воспользуемся этой формулой. Возведем обе ее части в степень (-y) : (x(-y)(p-1)(q-1))mod n = 1(-y) = 1. Теперь умножим обе ее части на x : (x(-y)(p-1)(q-1)+1)mod n = 1*x = x.

А теперь вспомним как мы создавали открытый и закрытый ключи. Мы подбирали с помощью алгоритма Евклида d такое, что e*d+(p-1)(q-1)*y=1, то есть e*d=(-y)(p-1)(q-1)+1. А следовательно в последнем выражении предыдущего абзаца мы можем заменить показатель степени на число (e*d). Получаем (xe*d)mod n = x. То есть для того чтобы прочесть сообщение ci=((mi)e)mod n достаточно возвести его в степень d по модулю m : ((ci)d)mod n = ((mi)e*d)mod n = mi.

На самом деле операции возведения в степень больших чисел достаточно трудоемки для современных процессоров, даже если они производятся по оптимизированным по времени алгоритмам. Поэтому обычно весь текст сообщения кодируется обычным блочным шифром (намного более быстрым), но с использованием ключа сеанса, а вот сам ключ сеанса шифруется как раз асимметричным алгоритмом с помощью открытого ключа получателя и помещается в начало файла.

 

 


Лекция 5.

Название: Понятие хэш-функции, электронная подпись






Дата добавления: 2015-05-30; просмотров: 498; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2018 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.