Изучение устройства зависимой подвески

4.1 Устройство и принцип работы клиноременного вариатора

Клиноременной вариатор состоит из нескольких (как правило, одной - двух) ременных передач, где шкивы образованы коническими дисками, за счет сдвигания и раздвигания которых изменяются диаметр шкивов и, соответственно, передаточное число (рисунок 1).

1 – ведущий привод; 2 – набор первичных аксиально перемещаемых дисков; 3 – набор вторичных аксиально перемещаемых дисков; 4 – ведомый привод; 5 – передающая цепь

Рисунок 1 – Принцип работы вариаторной передачи

 

4.2 Устройство и принцип работы бесступенчатой коробки передач с электронным управлением

В результате развития электроники появились бесступенчатые коробки передач с электронным управлением, представителем которых является коробка передач «Ауди» для модели А6 2.8, оснащенной двигателем мощностью 193 л. с. с крутящим моментом 280 Н.м.

Основными элементами бесступенчатой коробки передач автомобиля А6 2.8 (рисунок 2) являются: механизм включения для начала движения (фрикционы с дисками в масле), ведущий и ведомый шкивы с аксиально перемещаемыми дисками и сталь­ной ремень, предназначенный для пере­дачи мощности; система электронно-гидравлического управления коробкой передач; узел движения задним ходом; главная передача с дифференциалом.

1 – маховик с встроенным демпфером; 2 – фрикционы для движения задним ходом; 3 – промежуточная передача; 4 – вариатор с цепью; 5 – электронный блок управления коробкой; 6 – гидравлическое управляющее устройство; 7 – гидравлическая система передвижения вариаторов; 8 – фрикционы для движения передним ходом; 9 – планетарный передаточный механизм

Рисунок 2 – Схема бесступенчатой коробки передач автомобиля Ауди:

Вариатор состоит из ведущего и ведомого конических шкивов с аксиально перемещаемыми дисками, и передающей вращения специальной цепи. На ведущий привод передается вращения от двигателя через промежуточный передаточный механизм, ведомый привод передает крутящий момент на дифференциал. При передачи движения цепь всегда натянута.

Для плавного трогания с места при включения передачи переднего и заднего хода служит многодисковое сцепления включаемое с помощью гидравлики. Изменение направления вращения производится с помощью шестерен планетарного механизма.

Для привода ведомого шкива применяется многорядная стальная цепь, при этом со шкивами контактируют не сегменты ремня, как было в прежних конструкциях, а скошенные торцы соединительных осей звеньев. Чтобы исключить проскальзывание, прижим скошенных торцов осуществляется сложной следящей гидравлической системой, которая создает в каждый момент необходимое давление от 20 до 60 кгс/см2. В результате износ штифтов составляет лишь 0,2 мм за весь срок службы.

Цепь обеспечивает не только передачу значительной нагрузки, но еще и изменение передаточного отношения в диапазоне от 1:2,1 до 1:12,7. Это позволило отказаться от гидротрансформатора, а значит, и от дополнительных потерь мощности.

Управление коробкой передач осуществляется с помощью электронного блока управления. Для принятия определенного решения в блок управления поступает информация от различных датчиков: частоты вращения коленчатого вала двигателя, частоты вращения входного передаточного механизма, положения педали подачи топлива, крутящего момента двигателя, температуры масла в коробке передач.

Электронный блок управления способен распознать по характеру движения педали подачи топлива, какой режим предпочитает водитель – экономичный или спортивный. В последнем случае уже со скорости 60 км/ч вариатор включает режим «овердрайв», то есть занижает передаточное отношение. При энергичном нажатии педали подачи топлива включается спортивный режим. Блок управления реагирует включением пониженной передачи и на наличие прицепа или крутого подъема, необходимость торможения двигателем. Программа блока управления позволяет работать коробке передач в ручном режиме, когда из памяти извлекаются заранее запрограммированные значения передаточного отношения. В этом случае бесступенчатая коробка действует как шестиступенчатая коробка передач с последовательным переключением.

 

Изучение устройства и взаимодействия деталей коробок передач с непрерывным потоком мощности (DSG)

4.1 Общие сведения о коробках передач с непрерывным потоком мощности (DSG)

Производители современных автомобилей в целях повышения экономичности и комфортности внедряют в производство коробки передач не уступающие по комфортности электрогидравлическим коробкам передач, но обладающими меньшими потерями на привод трансмиссии. К таким коробкам передач можно отнести завоевывающие автомобильный рынок коробки с двойным сцеплением DSG (Double Clutch Transmission).

В коробке передач с двойным сцеплением условно объе­динены две коробки, причем каждая со своим сцеплением. Одна «коробка» от­вечает за включение нечетных передач (первой, третьей и пятой), другая – четных: второй, четвертой и шестой, что позволяет включить две передачи одновременно. Такая коробка передач называется преселективной.

 

4.2 Устройство и принцип работы коробок передач с непрерывным потоком мощности (DSG)

Коробка передач DSG построена на базе шестиступенчатой трехвальной коробки. На верхнем ведомом валу установлены шестерни задней, V и VI передач (рисунок 1), на нижнем – шестерни передач с I по IV. В этой коробке имеется два первичных вала. Каждый вал имеет свой пакет сцеплений. Пакет сцеплений представляет собой два пакета фрикционов, погруженных в масляную ванну. Функция отвода тепла от пар трения возложена на масло, чью циркуляцию обеспечивает масляный насос, аналогичный тем, которые устанавливаются на гидромеханических автоматических коробках передач. Охлаждение масла и его фильтрация от продуктов трения происходит в масляном фильтре и охладителе масла. Пере­ключение передач осуществляется по­средством гидроцилиндров, воздей­ствующих на штоки. При этом теряется часть энергии, однако не больше той, которую теряет гидротрансформатор в автоматической коробке передач до блоки­ровки. В качестве управляющего звена в конструкцию введена специальная система управления. По сути DSG не что иное, как за­мена традиционной гидромеханической коробки передач, в состав которой входят звено, обеспе­чивающее бесступенчатое изменение крутящего момента (гидротрансфор­матор), и набор планетарных рядов.

На наружном первичном валу находятся шестерни четных передач — II, IV и VI. Внутри наружного первичного вала проходит внутренний первичный вал, на котором находятся шестерни нечетных передач I, III, V и заднего хода.

 

1 ­­­­­– внутренний первичный вал; 2 – наружный первичный вал; 3 – многодисковая муфта сцепления четных передач 4 – многодисковая муфта сцепления нечетных передач; 5 – главная передача (на пятой, шестой передачах и передаче заднего хода); 6 – шестерня передачи заднего хода; 7 – шестерня шестой передачи; 8 – шестерня пятой передачи; 9 – шестерня первой передачи; 10 – шестерня третьей передачи; 11 – шестерня четвертой передачи; 12 – шестерня второй передачи; 13 – главная передача (на первой, второй, третьей и четвертой передачах)

Рисунок 1 – Схема коробки передач с двойным сцеплением (работа на первой передаче)

Коробка передач с двумя сцеплениями обеспечивает переключение передач без разрыва потока мощности. Достигается это следующим образом. В коробке DSG одновременно включены две передачи. В обычных конструкциях такое положение ведет к неминуемой аварийной поломке, но в коробке передач DSG этого не происходит. Работает только то зубчатое зацепление, ведущий вал которого соединен с включенным в данный момент сцеплением. Диски же другого сцепления разомкнуты и поэтому вторая пара шестерен не работает. При достижении необходимой частоты вращения коленчатого вала, электронный блок управления определяет необходимый момент переключения, при этом два гидропривода одновременно отпускают первое сцепление и замыкают второе. Работавшее до этого сцепление выключается и включается второе сцепление. Поток мощности при этом практически без разрыва передается дальше по кинематической цепочке.

Теперь активна уже вторая передача и коробка заранее вводит в зацепление шес­терни следующей, третьей передачи. Как только настанет следующий необходимый момент переключения, элек­тронный блок отдаст необходимые команды – и коробка, синхронно манипулируя двумя сце­плениями, плавно передает крутящий мо­мент от второй к третьей и т.д. – до шестой. Причем одновременно с шестой передачи ко­робка сразу может включить и пятую передачу — на тот случай, если частота вращения коленчатого вала двигателя упа­дет и понадобится больше тяги.

На рисунке 1 идет разгон на первой передаче, шестерни второй уже находятся в зацеплении, но вра­щаются вхолостую, так как сцепление наружного первичного вала разомкнуто.

 

Крутящий момент с коленчатого вала двигателя передается на двухмассовый маховик. Далее передача крутящего момента производится через разъемное шлицевое соединение маховика с входной ступицей коробки передач. Входная ступица жестко соединена с ведущим диском сдвоенного сцепления.

Ведущий диск сдвоенного сцепления соединен посредством корпуса многодисковой муфты с главной ступицей сцепления. С этой же ступицей соединен корпус муфты.

Крутящий момент подводится к каждой из муфт через ее корпус. Если муфта замкнута, крутящий момент передается на ее ступицу и далее на соединенный с ней первичный вал.

4.3 Устройство и принцип работы многодисковой муфты

Многодисковые муфты (рисунок 2) передают крутящий момент только за счет сил трения между дисками. Многодисковая муфта 9 образует внешнюю часть блока муфт сцепления. Она служит для передачи крутящего момента на первичный вал 1, обслуживающий первую, третью и пятую передачи, а также передачу заднего хода.

1 – внутренний первичный вал; 2 – наружный первичный вал; 3 – поршень включения многодисковой муфты четных передач; 4 – гидроцилиндр многодисковой муфты включения нечетных передач; 5 – поршень включения многодисковой муфты нечетных передач; 6 – гидроцилиндр многодисковой муфты включения четных передач; 7 – ступица муфты включения нечетных передач; 8 – корпус муфты включения нечетных передач; 9 – многодисковая муфта включения нечетных передач; 10 – винтовая пружина; 11 – ступица муфты включения четных передач; 12 – многодисковая муфта включения четных передач 13 – диафрагменная пружина

Рисунок 2 – Многодисковая муфта

Замыкание муфты 9 нечетных передач производится под давлением масла, подводимого в ее гидроцилиндр 4. Перемещающийся под давлением масла поршень 5 сжимает пакет дисков муфты 9. В результате этого крутящий момент передается на диски, вращающиеся вместе с ее ступицей и соединенным с ней внутренним первичным валом 1. При размыкании муфты поршень 5 отжимается диафрагменной пружиной 13 в исходное положение.

Многодисковая муфта включения четных передач 12 образует внутреннюю часть блока муфт сцепления. Она служит для передачи крутящего момента на наружный первичный вал 2, обслуживающий вторую, четвертую и шестую передачи. Замыкание муфты 12 производится под давлением масла, подводимого в ее гидроцилиндр 6. При этом перемещающийся под давлением масла поршень 3 сжимает пакет дисков муфты 12, обеспечивая передачу крутящего момента на наружный первичный вал 2. При размыкании муфты поршень 3 отжимается в исходное положение винтовыми пружинами 10.

 

Изучения устройства и работы дифференциала редуктора ведущего моста

4.1 Устройство редуктора переднего ведущего моста

Устройство редукторной части переднего ведущего моста автомобиля типа
4х4 приведено на рисунок 1.

1 – гайка; 2 – фланец ведущей шестерни; 3 – манжета; 4, 7 и 12 – подшипники; 5 – распорная втулка; 6 – ведущая шестерня; 8 – регулировочное кольцо; 9 – картер; 10 –пробка маслозаливного отверстия; 11 – дифференциал; 13 – прокладка; 14 – вилка внутренняя; 15 – стопорная пластина; 16 – гайка подшипников дифференциала; 17 – крышка подшипника дифференциала; 18 – ведомая шестерня; 19 – сапун; 20 –крышка картера

Рисунок 1 – Передний ведущий мост автомобиля типа 4х4

 

Главная передача и дифференциал устанавливаются в полость картера моста и после регулировки закрываются крышкой 20.

Ведущая 6 и ведомая 18 шестерни главной передачи спарены по контакту и шуму, промаркированы одним порядковым номером, и при повреждении одной из них заменяются комплектом.

Между внутренними кольцами подшипников 4 и 7 ведущей шестерни расположена распорная втулка 5, которая деформируясь при затягивании гайки
1 ведущей шестерни, обеспечивает предварительный натяг в ее подшипниках. Между торцом ведущей шестерни и внутренним подшипником установлено регулировочное кольцо 8, подбором его по толщине определяется правильное
положение ведущей шестерни относительно ведомой. Дифференциал в сборе с коническими подшипниками 12 установлен в гнездах картера, закрытых крышками 17, закрепленными болтами.

Боковой зазор в зацеплении шестерен главной передачи, а также предварительный натяг подшипников дифференциала регулируются гайками 16.

Под сателлитами и полуосевыми шестернями установлены опорные шайбы.

Крестовина, на которой установлены сателлиты, составная из двух осей.

Для предотвращения повышения давления внутри моста на кожухе картера
установлен сапун 19.

4.2 Устройство редуктора заднего ведущего моста

Устройство редуктора заднего моста ВАЗ-2107 показано на рисунке 2.

1 – ведущая шестерня; 2 – ведомая шестерня; 3 – сателлит; 4 – шестерня полуоси; 5 – ось сателлитов; 6 – коробка дифференциала; 7 – болты крепления крышки подшипника коробки дифференциала; 8 – крышка подшипника коробки дифференциала; 9 – пластина стопорная; 10 – регулировочная гайка подшипника; 11 – картер редуктора

Рисунок 2 – Редуктор заднего моста

4.3 Общие сведения, устройство и принцип работы дифференциала

Дифференциал предназначен для передачи, изменения и распределения крутящего момента между двумя потребителями и обеспечения, при необходимости, их вращения с разными угловыми скоростями.

Расположение дифференциала в трансмиссии автомобиля:

- в заднеприводном автомобиле для привода ведущих колес – в картере заднего моста;

- в переднеприводном автомобиле для привода ведущих колес – в коробке передач;

- в полноприводном автомобиле для привода ведущих колес – в картере переднего и заднего мостов;

- в полноприводном автомобиле для привода ведущих мостов – в раздаточной коробке.

Дифференциалы, используемые для привода ведущих колес, называются межколесными. Межосевой дифференциал устанавливается между ведущими мостами полноприводного автомобиля.

Конструктивно дифференциал построен на основе планетарного редуктора. В зависимости от вида зубчатой передач, используемой в редукторе, различают следующие виды дифференциалов:

- конический;

- цилиндрический;

- червячный.

Конический дифференциалприменяется в основном в качестве межколесного дифференциала. Цилиндрический дифференциал устанавливается чаще между осями полноприводных автомобилей. Червячный дифференциал, ввиду своей универсальности, может устанавливаться как между колесами, так и между осями.

Устройство дифференциала рассмотрено на примере самого распространенного конического дифференциала. Составные части дифференциала являются характерными и для других видов дифференциалов. Конический дифференциал имеет следующее общее устройство (рисунок 3):

- корпус;

- сателлиты;

- полуосевые шестерни.

1 – ведомая шестерня главной передачи; 2 – фрагмент ведущей шестерни главной передачи; 3 – ось сателлитов; 4 – сателлит; 5 – корпус дифференциала; 6 – правый фланцевый вал; 7 – сальник; 8 – конический роликовый подшипник; 9 – полуосевая шестерня; 10 – левый фланцевый вал; 11 – фрагмент картера коробки передач

Рисунок 1 – Конический дифференциал

Корпус (другое наименование – чашка дифференциала) воспринимает крутящий момент от главной передачи и передает его через сателлиты на полуосевые шестерни. На корпусе жестко закреплена ведомая шестерня главной передачи. Внутри корпуса установлены оси, на которых вращаются сателлиты.

Сателлиты, играющие роль планетарной шестерни, обеспечивают соединение корпуса и полуосевых шестерен. В зависимости от величины передаваемого крутящего момента в конструкции дифференциала используется два или четыре сателлита. В легковых автомобилях применяется, как правило, два сателлита.

Полуосевые шестерни (солнечные шестерни) передают крутящий момент на ведущие колеса через полуоси, с которыми имеют шлицевое соединение. Правая и левая полуосевые шестерни могут иметь равное или различное число зубьев. Шестерни с равным числом зубьев образуют симметричный дифференциал, тогда как неравное количество зубьев характерно для несимметричного дифференциала.

Симметричный дифференциал распределяет крутящий момент по осям в равных соотношениях, независимо от величины угловых скоростей ведущих колес. Благодаря этим свойствам симметричный дифференциал используется в качестве межколесного дифференциала.

Несимметричный дифференциал делит крутящий момент в определенном соотношении, поэтому устанавливается между ведущими осями автомобиля.

В работе симметричного межколесного дифференциала можно выделить три характерных режима:

- прямолинейное движение;

- движение в повороте;

- движение по скользкой дороге.

При прямолинейном движении колеса встречают равное сопротивление дороги. Крутящий момент от главной передачи передается на корпус дифференциала, вместе с которым перемещаются сателлиты. Сателлиты, обегая полуосевые шестерни, передают крутящий момент на ведущие колеса в равном соотношении. Так как сателлиты на осях не вращаются, полуосевые шестерни движутся с равной угловой скоростью. При этом частота вращения каждой из шестерен равна частоте вращения ведомой шестерни главной передачи.

При движении в повороте внутреннее ведущее колесо (расположенное ближе к центру поворота) встречает большее сопротивление, чем наружное колесо. Внутренняя полуосевая шестерня замедляется и заставляет сателлиты вращаться вокруг своей оси, которые в свою очередь увеличивают частоту вращения наружной полуосевой шестерни. Движение ведущих колес с разными угловыми скоростями позволяет проходить поворот без пробуксовки. При этом, в сумме частоты вращения внутренней и наружной полуосевых шестерен всегда равна удвоенной частоте вращения ведомой шестерни главной передачи. Крутящий момент, независимо от разных угловых скоростей, распределяется на ведущие колеса в равном соотношении.

При движении по скользкой дороге одно из колес встречает большее сопротивление, тогда как другое проскальзывает - буксует. Дифференциал, в силу своей конструкции, заставляет вращаться буксующее колесо с увеличивающейся скоростью. Другое колесо при этом останавливается. Сила тяги на буксующем колесе, по причине низкой силы сцепления, мала, поэтому и крутящий момент на этом колесе тоже мал. А так как дифференциал у нас симметричный, то на другом колесе крутящий момент тоже будет небольшим. Тупиковая ситуация – автомобиль не может сдвинуться с места.

Для продолжения движения необходимо увеличить крутящий момент на свободном колесе. Это осуществляется с помощью блокировки дифференциала.

 

Изучение устройства и работы агрегатов полного привода трансмиссии

4.1 Общие сведения о полноприводной трансмиссии

Автомобили, у которых все колеса ведущие, называют полноприводными. Если крутящий момент передается на все колеса, улучшается способность автомобиля двигаться в плохих дорожных условиях. Это послужило толчком к созданию огромного семейства внедорожных автомобилей. Такие автомобили называют автомобилями повышенной проходимости. В некоторых странах легковые автомобили повышенной проходимости принято называть SUV (Sport Utility Vehicle – автомобили для спорта) или RV (Recreational Vehicle – автомобили для отдыха). Некоторые автомобили с приводом на четыре колеса обозначают AWD (All Wheel Drive – все колеса ведущие) или AD (4 Wheel Drive – привод на четыре колеса), а иногда просто 4x4. ­­

Легковые автомобили с приводом на четыре колеса могут иметь или постоянный привод всех колес, или подключаемый ко всем колесам при необходимости. Существуют конструкции полноприводных трансмиссий, в которых обеспечивается постоянный привод на передние (автомобили Toyota RAV4, Honda CRV и др.) или задние колеса (автомобили Ford Explorer, Nissan Terrano и др.), а привод на другие два колеса включается при необходимости. Причем это вклю­чение может происходить автоматически, в зависимости от условий движения, или вручную по желанию водителя.

В любом автомобиле, имеющем привод на четыре колеса, независимо от расположе­ния двигателя, необходимо разделить крутящий момент, получаемый на ведомом вале коробки передач, на два направления и передать один к переднему мосту, а другой к заднему. Кроме того, требуются две главные передачи: одна для привода передних колес, а другая задних соответственно.

 

4.2 Муфта Haldex

Муфта Haldex широко используется фирмой Volkswagen для автомобилей класса А (Volkswagen Golf, Bora, Audi TT, Skoda Oktavia, Seat Toledo и т.д.). С од­ной стороны, она предлагает преиму­щества постоянного привода на все колеса, с другой — она может комби­нироваться с такими системами, пре­дотвращающими пробуксовку колес, как ABS, EDS, ASR, EBV и ESP.

Механическая часть муфты Haldex состоит из цилиндрического входного вала с аксиально-поршневым насосом и рабочим поршнем, ведомого вала с приводной головкой и дисковым кулачком, а также набора фрикционных дисков (рисунок 1). Наружные диски соединены с ведущим валом, а внутрен­не диски через продольное зубчатое зацепление с ведомым валом.

1 – ведомый вал с кулачковой шайбой; 2 – рабочий поршень; 3 – многодисковая муфта; 4 – насосный поршень; 5 – нагнетательный клапан; 6 – впускной клапан; 7 – регулятор давления управления муфтой; 8 – ведущий вал

Рисунок 1 – Схема муфты Haldex

При пробуксовке одного из колес автомобиля возникает разница в частоте вращения между ведомым 1 и ведущим 8 валами, и на поршень 4 направляется то выступающая, то опускающаяся часть кулачковой шайбы. В результате возвратно-поступательного движения поршня давление масла в гидравлической системе повышается и рабочий поршень давит на нажимной диск набора фрикционных дисков. Набор фрикционных дисков сжимается, и между входным и выходными валами возникает таким образом сцепление.

 

4.3 Вискомуфта

Вискомуфта получила свое название от латинского viscosus -­­­­ вязкий.

Основными элементами вискомуфты (рисунок 2) являются:
- корпус 6 и валы 1 и 5, герметизированные с помощью уплотнений;
- диски 4, соединенные шлицами с корпусом, диски 3 соединенные с ведомым валом. Диски имеет каналы и отверстия для увеличения вязкости трения жидкости;
- силиконовая (кремнийорганическая) жидкость, которая обладает высокой вязкостью и заполняет корпус на 80-90%.

Вискомуфта передает подводимый к ней крутящий момента за счет внутреннего трения в жидкости, находящейся между дисками. Когда их скорости одинаковы, муфта передает небольшую часть усилия (5…7%). При отставании ведомых дисков от ведущих, жидкость перемешивается, температура и вязкость ее растут, она расширяется и сжимает воздух. Когда он почти полностью сжат, давление в муфте резко возрастает, что вызывает осевое перемещение дисков по шлицам до их механического контакта. В результате этого вращение ведущего и ведомого валов производится за счет механического трения. При равной скорости вращения дисков температура и соответственно давление жидкости постепенно снижаются и они выходят из механического контакта. Передаваемый момент зависит от характеристик муфты и от разности скоростей вращения ее валов.

Вискомуфта может устанавливаться как самостоятельный узел между ведущими осями или «встраиваться» в конический дифференциал.

Основным недостатком вискомуфты является ее несовместимость с ABS.

Вискомуфта не пригодна к ремонту, так как количество и вязкость жидкости определяют характеристики вискомуфты и строго контролируются при ее изготовлении. При утечке части жидкости муфта подлежит замене.

 

1– ведомый вал; 2 – втулка; 3 – диски, соединенные с ведомым валом; 4 – диски, соединенные с корпусом; 5 – ведущий вал; 6 – корпус

Рисунок 2 – Вискомуфта

 

4.4 Дифференциал Torsen

Дифференциал Torsen (TORque SENsing – чувствующий крутящий момент) представляет собой механический самоблокирующийся дифференциал, в котором используется сложный набор червячных шестерен (рисунок 3).

На полый приводной вал 2 корпуса дифференциала передается крутящий момент от коленчатого вала через элементы трансмиссии. На общей оси сателлитов расположены прямозубые шестерни 5 и червячные сателлиты 6.

1 – корпус дифференциала; 2 – полый приводной вал корпуса дифференциала; 3 – вал привода передней оси; 4 – вал привода задней оси; 5 – прямозубые шестерни; 6 – червячные сателлиты; 7 – червячная шестерня привода передней оси; 8 – червячная шестерня привода задней оси

Рисунок 3 – Межосевой дифференциал Torsen

Набор шестерен внутри дифференциала состоит из ведомых червячных шестерен привода передней оси 7, задней 8 и ведущих (сателлитов) червячных шестерен 6. Основной особенностью такой конструкции является то, что червячные шестерни могут приводить во вращение другие шестерни, но са­ми не могут приводиться во вращение. Такая особенность приводит к появлению некоторой степени блокирования дифференциала.

При вращении приводного вала вращается и корпус дифференциала, толкая оси сателлитов. При движении по асфальту дифференциал Torsen распределяет крутящий момент между осями поровну. При низких значениях входного кру­тящего момента, передаваемого от коленчатого вала (движение по асфальту), шестерни дифференциала вращаются свободно и его действие напоминает работу обычного симметричного дифференциала. Когда входной крутящий момент увеличи­вается (колеса одной оси начинают проскальзывать), набор червячных шестерен нагружается и в определенный момент два выходных вала привода передней и задней оси блокируются. Но стоит только колесам одной оси начать проскальзывать, крутящий момент перебрасывается на ту ось, колеса которой имеют лучшее сцепление с покрытием.

 

4.5 Раздаточная коробка

Устройство раздаточной коробки показано на рисунке 4.

1 – вилка муфты блокировки дифференциала; 2 – шток вилки блокировки дифференциала; 3 – защитный чехол штока; 4 – стопорная шайба; 5 – втулка оси рычага; 6 – ось рычага; 7 – стопорный болт вилки; 8 – выключатель контрольной лампы блокировки дифференциала; 9 – шток вилки переключения передач; 10 – рычаг блокировки дифференциала; 11 – дистанционная втулка; 12 – ось рычага переключения передач; 13 – кронштейны; 14 – вилка муфты переключения передач; 15 – рычаг переключения передач; 16 – втулка пружины фиксатора; 17 – пружина и шарик фиксатора; 18 – фланец ведущего вала; 19 – передняя крышка; 20 – сальник ведущего вала; 21 – упорное кольцо подшипника; 22 – передний подшипник ведущего вала; 23 – шестерня высшей передачи; 24 – муфта переключения передач; 25 – картер раздаточной коробки; 26 – шестерня низшей передачи; 27 – задний подшипник ведущего вала; 28 – установочное кольцо заднего подшипника ведущего вала; 29 – ведущий вал; 30 – втулка; 31 – ступица; 32 – задняя крышка; 33 – задний подшипник промежуточного вала; 34 – промежуточный вал; 35 – подшипник вала привода заднего моста; 36 – задний подшипник дифференциала; 37 – фланец; 38 – сальник вала привода заднего моста; 39 – задний корпус дифференциала; 40 – опорная шайба шестерни; 41 – шестерня привода заднего моста; 42 – ось сателлитов; 43 – стопорное кольцо; 44 – пружинная шайба; 45 – кронштейн подвески; 46 – упорная шайба сателлита; 47 – картер привода переднего моста; 48 – сателлит; 49 – ведомая шестерня дифференциала; 50 – передний корпус дифференциала; 51 – стопорное кольцо; 52 – пружинная шайба; 53 – передний подшипник корпуса дифференциала; 54 – муфта блокировки дифференциала; 55 – установочное кольцо переднего подшипника дифференциала; 56 – маслоотражатель; 57 – сальник вала привода переднего моста; 58 – подшипник вала привода переднего моста; 59 – фланец вала привода переднего моста; 60 – вал привода переднего моста; 61 – пробка слива масла; 62 – ведомая шестерня привода спидометра; 63 – роликовый подшипник промежуточного вала; 64 – заливная пробка; 65 – ведущая шестерня привода спидометра.

Рисунок 4 – Раздаточная коробка

Изучение устройства зависимой подвески

 








Дата добавления: 2015-03-03; просмотров: 2249;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.045 сек.