ОСНОВНЫЕ ДОЗИМЕТРИЧЕСКИЕ ВЕЛИЧИНЫ

Современная система дозиметрических величин включает в себя три компоненты:

- базовые физические величины, являющиеся мерой воздействия ионизирующего излучения на вещество;

- нормируемые величины, являющиеся мерой ущерба от воздействия излучения на человека;

- операционные величины, непосредственно определяемые из результатов измерений и предназначенные для оценки нормируемых величин при радиационном контроле.

Базовые величины характеризуют источник излучения, вид излучения и радиационные поля, возникающие при прохождении излучения через вещество. К ним относятся активность источника А, флюенс Ф и плотность потока частиц или квантов j, поглощенная доза D, керма К, плотность потока энергии частиц или квантов I, линейная передача энергии L (ЛПЭ). К базовым величинам относится также экспозиционная доза X, определяемая только для фотонного излучения в воздухе и постепенно выходящая из употребления.

Нормируемые величины характеризуют ущерб при облучении отдельной ткани или органа человека. К ним относится эквивалентная доза в органе или ткани НТ (Т – индекс органа или ткани). Величина НТ определяется суммированием по всем видам излучения R:

, (1.1)

где WR – взвешивающий коэффициент излучения, устанавливаемый на основе обобщения знаний о биологической эффективности излучения; DT,R – поглощенная доза излучения вида R в органе или ткани Т, которая в отличие от поглощенной дозы D, являющейся дифференциальной характеристикой усредненной передачи энергии элементу массы, характеризует полную интегральную передачу энергии всему органу или ткани. К нормируемым величинам относится также эффективная доза Е, являющаяся мерой ущерба, нанесенного человеку в результате облучения всего тела или нескольких органов и тканей. При внешнем облучении эффективная доза определяется суммированием по всем органам и тканям Т:

, (1.2)

где WT – взвешивающий коэффициент для органа или ткани Т усредненного стандартного человека. Значения WT регламентируются и установлены примерно равными отношению эквивалентной дозы равномерного облучения всего тела стандартного человека и эквивалентной дозы НТ облучения органа Т, при которых ожидается один и тот же ущерб вследствие сокращения продолжительности периода полноценной жизни человека из-за возможности возникновения стохастических эффектов, вызванных облучением.

Операционные величины – величины, однозначно определяемые через физические характеристики поля излучения в точке (а не в органе или ткани), максимально, по возможности, приближенные в стандартных условиях облучения к соответствующим нормируемым величинам и предназначенные для консервативной оценки этих величин при дозиметрическом контроле. В определении операционных величин внешнего облучения используется эквивалент дозы Н, равный поглощенной дозе D в точке (элементе массы), умноженной на средний коэффициент качества для излучения, воздействующего на ткань в данной точке:

. (1.3)

В отличие от взвешивающего коэффициента излучения WR, коэффициент качества характеризует передачу энергии излучения биологической ткани в зависимости от распределения поглощенной дозы по линейной передаче энергии L в точке взаимодействия излучения с веществом:

, (1.4)

где – поглощенная доза излучения R в точке взаимодействия излучения с веществом, обусловленная частицами с ЛПЭ в интервале от L до L+dL. Вид функции Q(L) регламентируется нормативными документами для установления, по возможности, наиболее близкого соответствия между операционными и нормируемыми величинами. Для внешнего фотонного облучения, если в качестве точки взаимодействия выбрать точку на глубине 10 мм в органе или ткани, из (1.4) получим

.

При радиационном контроле характеристикой поля излучения в некоторой точке пространства в отсутствие объекта облучения может быть керма, а для фотонного облучения еще и экспозиционная доза. Но эти характеристики поля не участвуют в определении ни нормируемых величин, ни операционных. Поглощенная доза D характеризует поле излучения только в присутствии объекта. Поэтому в качестве характеристики поля излучения при контроле радиационной безопасности введено понятие операционной величины – амбиентного эквивалента дозы Н*(d). Чтобы определить эту величину в некоторой точке поля излучения, в поле вводится шар из тканеэквивалентного материала диаметром 30 см с плотностью 1 г/см3, центр которого совмещается с этой точкой. Затем рассматривается гипотетическое поле излучения, идентичное реальному по составу, флюенсу и энергетическому распределению, но мононаправленное и однородное в пределах сечения шара. При определении эффективной дозы амбиентный эквивалент дозы Н*(d) в рассматриваемой точке поля численно равен эквиваленту дозы (1.3) в точке шара на глубине d = 10 мм от его поверхности на линии диаметра, параллельного направлению распространения мононаправленного однородного излучения и обозначается Н*(10). Измеритель амбиентного эквивалента дозы рекомендован в качестве инспекционного дозиметра. Градуировку измерителя амбиентного эквивалента дозы можно осуществить в поле мононаправленного равномерного излучения, создаваемого поверочной установкой, сличением его показаний с показаниями инспекционных дозиметров.

Возникает вопрос, в какой мере можно использовать существующие измерители экспозиционной дозы (базовой дозиметрической величины) для определения амбиентного эквивалента дозы Н*(10) (операционной величины) и как эти величины связаны с эффективной дозой Е (нормируемой величиной).

Значения энергетической зависимости эффективной дозы внешнего облучения стандартного человека фотонами, отнормированные на единичный флюенс фотонов при изотропном падении излучения на тело человека (ИЗО) или плоскопараллельном падении излучения (ПЗ – передне-задняя геометрия) представлены в табл. 8.5 Норм радиационной безопасности НРБ-99. Эти значения получены расчетом переноса излучения в органы и ткани численным интегрированием поглощенной энергии по их объемам с последующим суммированием с взвешивающими коэффициентами WТ. Там же приведены значения воздушной кермы, отнормированные на те же значения флюенса и при тех же значениях энергии g-квантов. Используя энергетический эквивалент экспозиционной дозы, можно от воздушной кермы перейти к экспозиционной дозе и по показаниям измерителя экспозиционной дозы судить об эффективной дозе при известном энергетическом распределении фотонов. В этом случае экспозиционная доза переходит в разряд операционных величин. Значения эффективной дозы Е, воздушной кермы Квозд., а также отношения амбиентного эквивалента дозы Н* к эффективной дозе Е Н*(10)/Е и экспозиционной дозы Х к эффективной дозе Е Х/Е, выраженные в Р/сЗв, приведены в табл. 1.1.

Таблица 1.1

Значения эффективной дозы Е(ПЗ), отнормированные на единичный флюенс в передне-задней геометрии, воздушной кермы (Квозд.) и отношений амбиентного эквивалента дозы Н*(10) и экспозиционной дозы Х к эффективной дозе Е для различных энергий фотонов Еg

Еg, кэВ Е (ПЗ), 10-12 Зв×см2 Квозд. 10-12 Гр×см2 ,
0,0485 7,43 1,22 17,54
0,125 3,12 6,47 28,6
0,205 1,68 5,00 9,43
0,300 0,721 2,64 2,76
0,357 0,323 1,51 1,04
0,517 0,371 1,18 0,83
1,00 0,856 1,19 0,98
2,47 2,38 1,19 1,11
4,48 4,47 1,17 1,15
12,0 12,1 1,13 1,16
10 000 23,8 24,0 1,11 1,16

Как видно из табл. 1.1, и Н*(10), при энергии более 100 кэВ, и Х, при энергии более 200 кэВ, могут быть использованы в качестве операционных величин для консервативной оценки нормируемой величины Е, причем использование Н*(10) никогда не приведет к недооценке эффективной дозы, а применение Х может привести к занижению эффективной дозы в области энергий Еg ~ 100 кэВ. В области малых энергий расхождения существенны из-за поглощения фотонного излучения слоем 10 мм тканеэквивалентного материала (при измерении Н*(10)) и больших значений воздушной кермы по сравнению с распределением поглощенной энергии в наружных слоях биологической ткани.








Дата добавления: 2014-12-02; просмотров: 2974;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.